105 research outputs found

    Common promoter variant in cyclooxygenase-2 represses gene expression: evidence of role in acute-phase inflammatory response

    Get PDF
    Objective: Cyclooxygenase (COX)-2 is a key regulatory enzyme in the synthesis of prostanoids associated with trauma and inflammation. We investigated the COX-2 gene for functional variants that may influence susceptibility to disease. Methods and results: The promoter of COX-2 was screened for variants in healthy subjects by use of polymerase chain reaction-based methods. Promoter activity was investigated by using reporter expression experiments in human lung fibroblasts. Patients undergoing coronary artery bypass graft surgery, with measurements of plasma markers linked to COX-2 activity, were genotyped for association studies. A common COX-2 promoter variant, -765G>C, was found and shown to be carried by >25% of a group of healthy UK subjects. The -765C allele had significantly lower promoter activity compared with -765G, basally (28±3% lower, P<0.005) and in serum-stimulated cells (31±2% lower, P<0.005). In patients subjected to coronary artery bypass graft surgery, the magnitude of rise in levels of C-reactive protein (CRP) was strongly genotype dependent. Compared with -765G homozygotes, patients carrying the -765C allele had significantly lower plasma CRP levels at 1 to 4 days after surgery (14% lower at the peak of CRP levels on day 3, P<0.05 for all time points). Conclusions: For several acute and chronic inflammatory diseases, -765G>C may influence the variability of response observed

    Impact of chronic consumption of dairy products varying in fatty acid composition on postprandial lipid responses: preliminary insights from the RESET study

    Get PDF
    Impact of chronic consumption of dairy products varying in fatty acid composition on postprandial lipid responses: preliminary insights from the RESET stud

    The effect of alfalfa (Medicago sativa) silage chop length and inclusion rate within a total mixed ration on the ability of lactating dairy cows to cope with a feed withholding and refeeding challenge

    Get PDF
    Cows fed diets containing a lower concentration of alfalfa silage (replacing corn silage) experienced greater reductions in rumen pH following a six hour feed witholding/refeeding challenge than those fed higher alfalfa concentration diets and also suffered greater short-term milk loss on the day of the challenge. Lower rumen pH in animals fed a long chop length compared to a shorter chop length raised questions over the effect of long forage particles in the diet during and following short-term feed deprivation. This research highlights the importance of maintaining feeding routines and ensuring adequate feed access throughout the day in dairy systems

    Assessing the accuracy of current near infra-red reflectance spectroscopy analysis for fresh grass-clover mixture silages and development of new equations for this purpose

    Get PDF
    The purpose of this study was to ascertain whether Near Infra-Red Reflectance Spectroscopy (NIRS) prediction equations calibrated on grass silage samples, could accurately predict the chemical composition of mixed grass-clover silage samples, and furthermore, to develop and calibrate new grass-clover equations should the grass-based equations be insufficiently accurate for these silages. A set of 94 silage samples from mixed grass-clover swards (clover concentration (CC) ranging from 4 to 1000 g/kg as fed; determined manually) were analysed for chemical composition using reference laboratory techniques, in vivo digestible organic matter in the dry matter (DOMD, in sheep), and in situ degradability of dry matter and crude protein (in cows). The same samples were scanned fresh (undried and unmilled, as is standard practice for silage analysis within UK laboratories) using NIRS (at AFBI, Northern Ireland) and grass-based prediction equations applied. Predicted and observed results were compared. Of 15 chemical components that were tested for prediction accuracy, only volatile-corrected dry matter and nitrogen were well predicted (RPD values of 4.9 and 2.4 respectively, with low root mean square errors of prediction (RMSEP)). Neutral detergent fibre and DOMD showed low RPD values, however the predicted and observed datasets had no significant bias between them and were therefore also considered as fit for purpose. Variables with significant bias between predicted and observed datasets that were not considered suitably accurate included crude protein, acid detergent fibre, microbial dry matter yield and the effective degradability of protein. For many components, bias could be attributed at least in part to CC and changes in the fractionation of nutrients present. For some variables such as crude protein, grass-based equations were sufficiently accurate at low CCs but became inaccurate as CC increased, as expected. In response to inadequate prediction accuracy of certain nutrients, new grass-clover equations were calibrated using the obtained spectra. These were validated and results indicated that the grass-clover-based equations outperformed their grass-based counterparts. The adoption of new grass-clover equations, or alternatively, with further development, the use of a CC correction factor to the existing grass-based equations, is recommended for commercial laboratories offering undried and unmilled silage analysis on samples containing clover

    Effect of a whey protein and rapeseed oil gel feed supplement on milk fatty acid composition of Holstein cows

    Get PDF
    Isoenergetic replacement of dietary saturated fatty acids (SFA) with cis-monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) can reduce cardiovascular disease (CVD) risk. Supplementing dairy cow diets with plant oils lowers milk fat SFA concentrations. However, this feeding strategy can also increase milk fat trans FA (TFA), and negatively impact rumen fermentation. Protection of oil supplements from the rumen environment is therefore needed. In the present study a whey protein gel (WPG) of rapeseed oil (RO) was produced for feeding to dairy cows, in two experiments. In Experiment 1 four multiparous Holstein-Friesian cows in mid-lactation were used in a change-over experiment, with 8-d treatment periods separated by a 5-day washout period. Total mixed ration diets containing 420 g RO or WPG providing 420 g of RO were fed and the effects on milk production, composition and FA concentration were measured. Experiment 2 involved four multiparous mid-lactation Holstein-Friesian cows in a 4 x 4 Latin square design experiment, with 28-d periods, to investigate the effect of incremental dietary inclusion (0, 271, 617 and 814 g/d supplemental oil) of WPG on milk production, composition and FA concentration in the last week of each period. There were minimal effects of WPG on milk FA profile in experiment 1, but trans-18:1 and total trans-MUFA were higher after 8 days of supplementation with RO than with WPG. Incremental diet inclusion of WPG in experiment 2 resulted in linear increases in milk yield, cis- and trans-MUFA and PUFA, and linear decreases in SFA (from 73 to 58 g/100 g FA), and milk fat concentration. The WPG supplement was effective at decreasing milk SFA concentration by replacement with MUFA and PUFA in experiment 2, but the increase in TFA suggested that protection was incomplete

    Free Energies and fluctuations for the unitary Brownian motion

    Get PDF
    We show that the Laplace transforms of traces of words in independent unitary Brownian motions converge towards an analytic function on a non trivial disc. These results allow one to study the asymptotic behavior of Wilson loops under the unitary Yang--Mills measure on the plane with a potential. The limiting objects obtained are shown to be characterized by equations analogue to Schwinger--Dyson's ones, named here after Makeenko and Migdal

    Whole genome analysis of a schistosomiasis-transmitting freshwater snail

    Get PDF
    Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology. We describe aspects of phero-perception, stress responses, immune function and regulation of gene expression that support the persistence of B. glabrata in the field and may define this species as a suitable snail host for S. mansoni. We identify several potential targets for developing novel control measures aimed at reducing snail-mediated transmission of schistosomiasis

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Get PDF
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways
    corecore